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ABSTRACT
We consider the algorithmic challenges behind a novel inter-
face that simplifies consumer research of online reviews by
surfacing relevant comparable review bundles: reviews for
two or more of the items being researched, all generated in
similar enough circumstances to provide for easy compari-
son. This can be reviews by the same reviewer, or by the
same demographic category of reviewer, or reviews focus-
ing on the same aspect of the items. But such an interface
will work only if the review ecosystem often has comparable
review bundles for common research tasks.

Here, we develop and evaluate practical algorithms for
suggesting additional review targets to reviewers to maxi-
mize comparable pair coverage, the fraction of co-researched
pairs of items that have both been reviewed by the same
reviewer (or more generally are comparable in one of sev-
eral ways). We show the exact problem and many sub-
cases to be intractable, and give a greedy online, linear-time
2-approximation for a very general setting, and an offline
1.583-approximation for a narrower setting. We evaluate
the algorithms on the Google+ Local reviews dataset, yield-
ing more than 10× gain in pair coverage from six months
of simulated replacement of existing reviews by suggested
reviews. Even allowing for 90% of reviewers ignoring the
suggestions, the pair coverage grows more than 2× in the
simulation. To explore other parts of the parameter space,
we also evaluate the algorithms on synthetic models.

Categories and Subject Descriptors
H.5.2 [HCI]: General; F.2.2 [Theory of Computation]:
Algorithms
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1. INTRODUCTION
Whether you’re choosing a plumber, or a kitchen sink,

or a dry hotel room, online crowdsourced review systems
now promote extensive consumer research and significantly
affect decision-making [8–11]. The volume and coverage of
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user-generated reviews is one of the key factors driving cus-
tomers to online businesses over traditional stores [7,15,23],
and can thus be considered one of the major driving forces
of the Internet economy. Yet consumers researching pur-
chase options online are often overwhelmed or confused by
the large volume of available information [15]. This is the
well-studied phenomenon of information overload which in
many contexts engenders difficulties with decision-making
and “analysis paralysis” [12,19,21,25].

In a typical research scenario, a consumer deciding be-
tween several items discovers a variety of unstructured, essay-
form reviews for each of the items, each written from the
unique perspective of the respective reviewer. So, which
item to pick?

Most existing review systems augment unstructured re-
views with coarse overall ratings, such as on a scale from 1
to 5 stars, and summarize an item by the arithmetic mean
of the reviews [1,6], occasionally with some filtering or per-
user weights [5]. But a numerical average is often a poor tool
for decision making. Obscure items may have only a couple
of reviews each, addressing different aspects of the items,
making the averages themselves statistically meaningless.
Also, reviewer grade distributions are neither smooth [16]
nor time-independent [18].

The cognitive load of a comparison task is lightest when
the options differ in a small number of clearly delineated
and contrasted ways [17, 19]. But can we corral a corpus
of unstructured user-generated reviews into an interface for
convenient “apples-to-apples” comparisons? One approach
is to use the tools of automatic natural-language analysis
to extract sentiment data and other semantics from an ex-
isting review corpus. A large and fruitful body of research
literature on approach is surveyed in [22]. Here, we pro-
pose and study a fundamentally different, orthogonal ap-
proach: pushing reviewers toward specific review tar-
gets to enable more comparisons among reviews by
the same user.

The reviewer herself is a major, perhaps dominant, source
of variation in the topics, attitudes, and conclusions of a con-
sumer review. When we look at Alice’s review, how do we
interpret her calling a record store’s prices“very affordable”?
That phrase carries a different meaning when coming from
a hipster than when coming from a hippie. What does Bob
mean when he calls a hotel’s carpet “terrible”? Is he con-
cerned about the color scheme or about biohazards? If Bob
has reviewed both of the hotels Carol is considering, a UI
can prominently surface these reviews to Carol: “This hotel
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and the hotel you just looked at have both been reviewed by
Bob,”along with both of Bob’s reviews side-by-side. Such an
interface, especially along with meta-data about Bob often
provided by social-oriented review sites1 will enable Carol to
deeply contextualize Bob’s reviews relative to his preferences
and demographics, and will bring the consumer choice ex-
perience closer to the gold standard of getting both reviews
from the same well-known friend.

How often can we surface such a review pair? In most
contexts, e.g. local businesses or consumable goods, if a
pair of items is frequently compared by researching users, it
is likely that some users have experienced both items and
can review both. In our target dataset, Google+ Local re-
views, we experimentally measured the pre-existing levels
of pair coverage: how many of the pairs of items frequently
searched for in the same session have at least one review pair
in common. Given the wide variety of reviewable items, and
no existing incentive to create review pairs, we found the
pair coverage was far too low to allow for a useful review
pair surfacing feature.

But an (honest) reviewer is typically acting altruistically,
with utility largely independent of which item she reviews
among the items she knows, so many reviewers will be recep-
tive to a suggestion of what to review next. We thus focus
on the algorithmic question of optimizing pair coverage by
picking review target suggestions:
General question. We are given a set of reviewers, where
each reviewer has already reviewed certain items, and the
importance of each pair of items, which measures how much
we value review pairs for this item pair. How do we assign
each reviewer to new items which she will review for us?

1.1 Notation and initial problem statement
Any given review ecosystem and review-comparison UI

design will determine several dimensions of our general ques-
tion that must be specified to arrive at a concrete algorith-
mic problem. In Section 5 we catalog this variety of set-
tings via a taxonomy for the relevant dimensions, but for
the time being we describe the particular form of the prob-
lem to which our experimental results apply.

Since our experimental evaluations center on reviews from
Google+ Local, we interchangeably refer to the reviewable
items as “venues”, but our results generalize immediately to
other review-suggestion settings as well.

We focus on a set of n venues that we denote by V . We
consider a weighted pair relevance graph G = (V,E) on the
venues where the edge weight cuv gives the fraction of the
consuming users who are interested in comparing u and v.

We assume a set of m reviewers R, with each reviewer
having already reviewed some initial set of venues.

In every context, there is a cost associated with making
more suggestions to any reviewer: there is typically a cap
on how much of the reviewer’s patience and attention we
can use, or on screen space to allocate to suggestions. We
can even incur monetary costs for suggestions in scenarios
where we incentivize reviewing. In all relevant cases, these
budgets are not fungible between reviewers: suggesting 1000
items to one reviewer and no items to the others is not at
all interchangeable with suggesting one item to each of 1000
reviewers. Thus, we only allow a single item to be suggested

1such as Bob’s rating distributions [2], third-party “helpful-
ness” ratings [1], or social profile data [4]

to each r ∈ R, drawn from a set of items Ar that we believe
r may be willing to review.

We use auv to denote the number of review pairs for venues
u and v.

These review suggestions aim to optimize the experience
of a researching user. We capture this with an objective
function, which is to maximize the weighted sum over all
item pairs of a concave function of the number of review
pairs, i.e. OF =

∑
u,v cuvF (auv) for some concave F . Con-

cavity corresponds to the natural constraint of decreasing
marginal utility of additional review pairs. In many cases
we are simply interested in having at least one reviewer, so
we use the objective F1(0) = 0 and F1(a) = 1 for any a ≥ 1.
We call the correspending objective OF1 or simply O1.

1.2 Our contributions
We begin in Section 2 with two approximation algorithms

for the problem described above:

• An online greedy 2-approximation algorithm in Sec-
tion 2.1

• An offline (e− 1)/e-approximation based on rounding
a convex program similar to the Max Cover problem
in Section 2.2. This can also be simplified to an LP, in
the case of the O1 objective.

We generalize the convex program to assign each reviewer
a constant number k new venues instead of just one.

In Section 3, we evaluate these algorithms in two settings.
First, we take all public venue reviews posted on Google+
Local, and conduct hypothetical experiments that remove
all reviews created after a time threshold, and consider what
would have happened to our objectives if all or some of the
same reviewers were instead redirected to review targets sug-
gested by our algorithms.

The (e− 1)/e-approximation algorithm improves over the
greedy algorithm when the review coverage is dense. We
demonstrate this effect in Section 4 on two synthetically-
generated datasets.

We then delve into the exact problems. We observe that
optimizing even the simple objectiveO1 exactly is NP-complete,
and we find that the problem remains intractable after be-
ing simplified in various ways. In particular, we show the
following lower bounds in Section 6:

Theorem 5. Optimizing O1 is NP-complete, even when
the graph is a clique (every pair has equal relevance cuv).

Theorem 6. Optimizing O1 is NP-complete, even with
only one reviewer with one prior review, if the reviewer is
willing to review k new venues instead of one.

Theorem 7. Optimizing O1 is NP-complete, even when
the graph is a clique and every reviewer is either willing to
review nothing or anything. (Every Ar is empty or V .)

Corollary 9. Optimizing O1 is NP-complete, even when
every reviewer is willing to review any restaurant.

(In Section 5 we propose a taxonomy of problems in order
to get a handle on the numerous variations.)

Having established that the exact problem is NP-Complete
even after various simplifications, we also give tractable ex-
act algorithms for a handful of particularly simple settings:
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• A polynomial algorithm for the O1 objective, in the
case that each reviewer only has one prior venue, but
is willing to review k arbitrary new venues. This may
be useful for optimizing suggestions for the many re-
viewers with one review.

• A linear-time online greedy algorithm for the O1 ob-
jective in the very simple case where the graph G is a
clique and each reviewer has a single previous review
and is willing to review one more arbitrary item.

Lastly, in Section 7, we address generalizations to “com-
parable reviews” notions broader than just reviews written
by the same person, and discuss several open problems.

2. ALGORITHMS
We now consider our two approximation algorithms to op-

timize the objectiveOF . The exact question’s NP-Completeness
is a corollary of Theorem 7.

2.1 Greedy
The first algorithm assigns the reviewers one at a time

in an on-line fashion. At each step, the algorithm chooses
the venue of the next reviewer in order to cause the greatest
increase in the objective function.

Put another way: after the algorithm has made t assign-
ments, let zrw(t) indicate whether r has reviewed w and
auv(t) indicate the number of reviewers who have reviewed
both u and v. Then at step t + 1, we assign reviewer rt+1

to the venue w which maximizes the total increase in OF
created by that assignment:

newt+1 =
∑
u∈V

cuwzrt+1u

[
F (auw(t) + 1)− F (auw(t))

]
. (1)

Theorem 1. The value of the greedy solution is at least
half the optimal value.

Proof. The intuition is that every time the greedy algo-
rithm causes a pair of venues to gain another common re-
viewer (increasing auv), then the only way it can be wasteful
is if a different reviewer should have co-reviewed u and v:
but at least one of the two reviewers is being used efficiently.

More carefully, after the algorithm has made t assign-
ments, let opt(t) be the value for OF if the remaining as-
signments are made optimally, and let val(t) be the value of
objective so far (that is, replacing auv with auv(t) in OF ).
Let opt = opt(0) be the unrestricted optimal value. Then
it’s enough to show that for every t, opt ≤ val(t) + opt(t).
This is trivially true at t = 0. Now, if we take a complete
solution that achieves opt(t), and change only the (t+ 1)-st
venue wt+1, the objective decreases by at most2newt+1: so
opt(t + 1) ≥ opt(t) − newt+1. To complete the proof, note
that val(t+ 1) = val(t) + newt+1.

2.2 Linear and Convex Programming
The second algorithm optimizes the objectiveOF by round-

ing a convex programming solution. In our implementation,
we were only concerned with the O1 objective function, in
which case the program becomes a linear program. We start
by describing this case.

2This argument depends on the fact that each reviewer is
assigned to at most one new venue, and that the function F
is concave.

The linear program as described here can only assign each
reviewer to one new venue. For the results in Section 3, we
used an extension of the algorithm which can assign multiple
venues per reviewer, but our proofs do not apply in this case.

For every two venues u, v for which cuv > 0, we add a
variable xuv. In any optimal integer solution of the linear
program, xuv will take the value 1 if some reviewer reviewed
both u and v (auv ≥ 1) and 0 otherwise.

Let r ∈ R be a reviewer, and Pr ⊆ V the set of venues
which r can review. For every venue w ∈ Pr, we add a vari-
able yrw which corresponds to us asking r to review w. We
denote by Q(r, w) the set of venues which will be reviewed
by r if he reviews w in addition to all the prior reviews she
made. We assume that r will agree to review w with some
probability prw. (When solving the problem outlined in Sec-
tion 1.1, take prw = 1 when w ∈ Ar and prw = 0 otherwise.)
The LP now looks like

Maximize
∑
u,v xuv

Subject to

∀u, v xuv ≤
∑

r,w: u,v∈Q(r,w)

yrwprw

xuv ≤ 1

∀r ∈ R
∑
w yrw ≤ 1

To do the rounding, we sample from the distributions yr,w
for every r. This means that the requests are always “legal”,
and each reviewer gets one request.

Theorem 2. The value of the rounded LP solution is at
least (e− 1)/e times the optimal value in expectation.

Proof. Consider any pair of venues u, v ∈ V . Each re-
viewer that has reviewed either u or v has some (possibly
zero) probability of reviewing the other venue. These prob-
abilities add to xuv, so the probability that (u, v) is not
co-reviewed is at most e−xuv .

We also present a simple integrality gap for the LP, which
shows that our analysis of the LP is tight. consider a set-
ting with just two venues denoted V,W , and n reviewers
who have all reviewed venue V . For each reviewer r the
probability that r agrees to review W is prw = 1/n. The
value of the LP would be 1. The optimal assignment3 is
to assign all the reviewers to W . However the value of this
assignment is 1− 1/e.

An extension to the linear program allows us to deal with
the objective OF for a general concave function F : N → R,
where the user benefits more when there are multiple co-
reviews on the items u and v she wants to compare. The
user’s utility is F (auv) if auv is the number of co-reviews on
u and v. In this case, the following convex program4 gives
an upper bound on the value of the optimal solution:

Maximize
∑
u,v F (auv)

Subject to

∀u, v auv ≤
∑

r,w: u,v∈Q(r,w)

yrwprw

∀r ∈ R
∑
w yrw ≤ 1

3We don’t have much of a choice here.
4We are maximizing a concave function, which is equivalent
to minimizing a convex function.
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Where again yrw is a variable for every reviewer r and
venue w, Q(r, w) is the set of venues which will be reviewed
by r if he reviews w in addition to all the prior reviews she
made and prw is the probability r agrees to review w. Asking
reviewer r to review w with probability yrw gives a solution
to the problem, and:

Theorem 3. The value of the rounded convex program
solution is at least (e − 1)/e times the optimal value in ex-
pectation.

The proof is similar to that of Theorem 2, and is omitted
here. Since Theorem 3 is a strict generalization of Theorem
2, and given the the integrality gap presented for the LP,
Theorem 3 is tight. However, for objectives other than O1

(where F (a) is constant for a ≥ 1) the bound is strictly
better than (e−1)/e. For example, if F (a) = a, the rounding
is optimal5. If F (a) = min{2, a}, then the approximation
ratio is 1− 2/e2. In general:

Theorem 4. For a general utility function F : N → R
with decreasing marginal returns, the approximation ratio of
the convex program solution is exactly

min
k∈N

Ea∼Poisson(k)[F (a)]

F (k)
.

Proof. Consider a single pair of venues, and suppose
the j-th reviewer reviews the pair with probability yj , and∑
yj = k. Let the random variable a be the number of re-

viewers who review the pair. The approximation ratio for
this venue pair is E[F (a)]/F (k). If there are kn total review-
ers, then the worst-case value for this expression is achieved
when every yj = 1/n. The ratio gets smaller as n increases,
so for fixed k, the approximation ratio is:

min
k∈N

lim
n→∞

Ea∼Binom(kn,1/n)[F (a)]

F (k)
.

As n increases, the Binomial distribution approaches the
Poisson distribution.

In many recommendation engines it is common to suggest
several options, trying to maximize the expected number of
suggestions a user accepts ( [1,3,4]). We consider the case in
which the number of suggestions shown to the user together
is constant. In this case, let prS denote the probability the
user agrees to review subset S of the venues, if a subset
T ⊃ S is presented to her. Similarly, let Q(r, S) denote the
set of restaurants reviewed by r, if she agrees to review S
in addition to what she has already reviewed. We now add
a variable yrS , for every reviewer r and set of venues S.
Since we only need to worry about S with constant size, the
number of variables is polynomial. Finally the LP is

Maximize
∑
u,v xuv

Subject to

∀u, v xuv ≤
∑

r,S: u,v∈Q(r,S)

yrSprS

xuv ≤ 1

∀r ∈ R
∑
w yrw ≤ 1

5We note that if F (i) = i then greedy would have also been
optimal.

Rounding this LP is similar to rounding the one with just
a single additional review. We also get the same approxi-
mation ratio. We note that if we make no assumptions on
prS , we show hardness of approximation even in degenerate
cases.

3. EXPERIMENTAL RESULTS
We evaluated the two algorithms of Section 2 on a task

based on real reviews data. We started with a corpus of
reviews from January 2007 to the start of July 2012. For
our graph G of venues that are worth comparing, we used
a weighted graph of pairs of venues, based on two sources.
First, venues that appear as prominent results in the same
search session were considered interesting to compare. Sec-
ond, we held out half of the authors from our reviews corpus,
and consider pairs of venues co-reviewed by the same author
in this held-out set to be interesting. To evaluate the per-
formance of each algorithm, we performed two experiments,
described in Sections 3.2 and 3.3 below.

3.1 Adapting the algorithms for real data
To implement the greedy and LP algorithms on real data,

we made a small change to each algorithm.
When running the greedy algorithm, sometimes there is

a reviewer who will not immediately increase the objective
function, no matter which venue they review. This can hap-
pen because all pairs of venues the reviewer could co-review
have already been reviewed by someone else, or (more com-
monly) because the reviewer has no previous reviews. In
both cases, we want to ask the reviewer to review a venue
which will help us if he comes back to the site. To do this, we
added a heuristic for assigning reviewers who cannot imme-
diately increase the objective. Our heuristic satisfies these
two properties:

1. All other things being equal, we prefer to send a re-
viewer to a venue which has a heavy outgoing edge.
This way, if he comes once more, we can at least get
this edge

2. All other things being equal, we prefer to send a re-
viewer to a venue which has not been reviewed many
times. This way, if she comes once more, the edges of
the venue will hopefully not be taken.

The LP algorithm as described in Section 2.2 is only able
to assign each reviewer to one new venue. The instances that
arise in our experiments may ask the algorithm to assign a
reviewer to any number of new venues, so it was necessary
to adapt the algorithm. We did so by adding a new variable
bruv for each triple (r, u, v), where r is a reviewer and u and
v are venues that r might end up reviewing. The variable
xuv is then bounded by the sum of the variables bruv, and
bruv is in turn bounded by both yru and yrv.

3.2 Experiment: re-assigning the last six months
In the first experiment, we removed all of the reviews in

our corpus from the year 2012, and let the greedy algorithm
choose how to re-assign some of those reviews. Each reviewer
would with probability 0.9 ignore the recommendation and
keep their original reviewed venue, and only with probabil-
ity 0.1 would review the suggested venue instead. (We did
not include the linear programming algorithm in this exper-
iment, since it cannot assign reviewers on-line and react to
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Figure 1: The growth of the objective function as
more reviews are added, and a simulation of what
an on-line greedy algorithm could accomplish if its
suggestions in 2012 were accepted with probabil-
ity 10%, or if its suggestions from the start were
accepted with probability 10%. Also shown is the
growth of the objective function if authors are only
allowed to review one venue in 2012.

a reviewer refusing a suggestion.) Figure 1 shows how our
objective function grows over time: for each date on the
time axis, we consider all pairs of venues that were both re-
viewed by a common author before that date, and add the
weights of all those edges in V . For comparison, we show
the growth of the objective function in reality (not allow-
ing the algorithm to intervene at all), and the performance
when the algorithm can re-assign reviewers with probability
10%. We also show the progression of the objective if each
author only reviews one venue in 2012.

3.3 Experiment: re-assigning shorter periods
In our second experiment, we consider 20 different dates

in the year 2012. For each date, we allow our greedy and
LP algorithms to re-assign reviews only after that date, with
each suggestion being accepted with probability 100%. Fig-
ure 2 shows the improvement for each such date.

In Figure 3, we again consider 20 different dates in the
year 2012. This time, we begin by restricting each author
to review at most one venue in 2012, and throwing out the
other reviews. Then, for each date, we allow our greedy
and linear-programming algorithms to re-assign all reviews
after that date, with each suggestion being accepted with
probability 100%.

3.4 Conclusions
Based on these results, it seems likely that suggesting

venues according to either algorithm even for a fairly short
period of time would have a noticeable impact on the pro-
portion of relevant pairs of venues with a common reviewer.
The greedy algorithm performed slightly better than round-
ing the solution of the LP. The situation between the greedy
and LP algorithms is reversed in Section 4 where we evalu-
ate both algorithms on synthetic instances (which are more
dense).
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Figure 2: Replacing all reviews after a certain time
(time on the x-axis) with what a greedy algorithm
gets using a random order, and what rounding the
multiple-new-reviews-per-author LP solution gets.
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Figure 3: Replacing all reviews after a certain time
(time on the x-axis) with what a greedy algorithm or
rounded LP gets. Before the experiment, we make
sure no author writes more than one review in 2012.
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In an earlier experiment with an integer program solver,
we found that the optimal integral solution was within 0.02%
of the optimal unrounded LP solution, and that both the lin-
ear programming and greedy algorithms performed within
5% of optimal. These early experiments used a different
graph of venues-worth-comparing cuv, so they cannot be
taken to exactly apply to the results in this section.

4. SYNTHETIC MODELS
In addition to the simulations on the reviews corpus men-

tioned above, we also generated synthetic datasets from two
models. Each model describes how to generate a graph of
venues that users might want to compare, which venues each
author has already reviewed, and which venues the author
is willing to review. The first models local reviews, where
users are interested in comparing venues that are close ge-
ographically. The second models planning a vacation: each
vacation has a set of attributes like price or location, and
users are interested in comparing similar vacations.

4.1 The Geographic Model
In this setting, we want to model reviewers who are willing

to review the local shops, regardless of what they have to
offer. However, the user of the site is usually not interested
(say) in comparing the local restaurant to the local book-
shop. She could either be interested in having a Chinese
meal, in which case she wants to read comparisons between
Chinese restaurants in the city, or she wants to buy a book,
and would like to see comparisons between bookstores.

There are two aspects to this setting which model the
Google+ Local reviews: geographic vicinity is important,
and there are venues which no user is interested in compar-
ing, but which a reviewer might be equally willing to review.

In general, we can consider k classes of venues, with n/k
venues in each class. To simplify the model, we always take
k = 2: think of book stores and restaurants. Each venue
v ∈ V is assigned a point xv on a two-dimensional sphere.
Users are not interested in comparing venues that are in dif-
ferent classes: the weight of an edge (u, v) is zero if u and v
are in different classes. If u and v belong to the same class,
then the weight of the edge (u, v) corresponds to the fraction
of users who are interested in comparing u and v and is de-

termined by the formula6 wuv = c(xu, xv) = e−|xu−xv|
2/2σ2

.
We also assign each reviewer r ∈ R a point yr in space, in-
ducing a probability distribution over nearby venues which
chooses venue v with probability proportional to c(yr, xv).
From this distribution, we choose nprev venues without re-
placement as previously reviewed venues, and then choose
nwilling more among the remaining venues as ones the author
would be willing to review. We choose σ based on n so that
the expected weighted degree of each venue7 is 10. While
the points sit on a two dimensional sphere, we use distances
from the ambient three-dimensional space.

6One way to arrive at this formula is to have users uniformly
distributed in space, and make each user more likely to com-
pare venues that are nearby. For efficiency, we delete edges
with weight less than 0.05.
7If D is the expected number of (other) venues in every
one-by-one square, and the other venues are uniformly dis-
tributed on the plane, then the expected degree of a venue
is 2πσ2D. Since we use a sphere rather than a plane, this is
only an approximation.
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Figure 4: Performance of the greedy and linear-
programming algorithms on 1000 synthetic datasets
generated using the geographic model with 1000
venues and 10,000 authors.

4.2 Results for the Geographic Model
Figure 4 compares the performance of the greedy algo-

rithm to the rounded linear programming solution on 1000
random instances of the geographic model generated with
the same parameters. The x-coordinate of each point is
the sum of edge weights wuv for each new co-reviewed pair
of venues in the solution found by the greedy algorithm.
Similarly, the y-coordinate shows the performance of the al-
gorithm based on linear programming. Figure 5 shows the
ratio of greedy to LP performance on synthetic datasets of
different sizes.

In both graphs we see that the linear programming algo-
rithm consistently does better than the greedy algorithm. It
is interesting that the greedy heuristic, which is essentially
an online algorithm, only does slightly worse than the offline.
Even when the market is large, the difference is around 7%.
This is good news, as in most natural architectures we ex-
pect an online component to decide which review to ask
the reviewer to fill, without knowing which other reviewers
would log into the site.

4.3 The Vacations Model
For this model, it is helpful to think of vacations v ∈ V

rather than venues. Each vacation has several properties,
such as price, location, style (like“romantic”or“adventure”),
and others. A user could want to go to Western Europe for
a honeymoon on a generous budget, and then would like to
see comparisons between luxurious vacations to France and
Italy. Alternatively, she could want to go on a tight budget
to South America, and will want to see comparisons between
cheap vacations in Peru and Bolivia. It is less likely that a
user would want to compare a backpacking trip in Peru, to
a romantic vacation in Paris8.

The reviewer, on the other hand, has been in O(1) vaca-
tions in her life. These vacations may have been to very dif-

8In the full version of the paper we also model the user who
wants to compare all vacations which share a property (say
all vacations to Italy). The results are similar to what we
present here.
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Figure 5: ratio of greedy to lp performance on
synthetic datasets generated using the geographic
model. for each input size, 1000 random datasets
were generated and both algorithms run on each
one. 90% of instances fell within the error bars, and
a line joins the medians. There are 2n venues (n in
each class) and 20n authors. Each author is willing
to review one of two venues. n = 500 corresponds to
Figure 4.

ferent places and in very different circumstances (academic
conference in China and a honeymoon in Ireland), and is
equally willing to review any one of them.

Based on this intuition, we assign each venue v ∈ V a
vector of attributes av ∈ [0, 1]k, with an edge of weight 1
between each pair of venues with `∞ distance below some
threshold |au − av| < τ . We choose τ as a function of the
number n of venues, so that the expected degree of each
venue is 10. We choose nprev venues Pr uniformly at random
to be the venues each reviewer r has previously reviewed,
and then nwilling reviews uniformly at random without re-
placement from the neighborhood of Pr to be the venues r
is willing to review.

4.4 Results for the Vacations Model
Figure 6 compares the performance of the greedy algo-

rithm to the rounded linear programming solution and is
organized in the same way as Figure 4. Figure 5 shows the
ratio of greedy to LP performance on synthetic datasets of
different sizes.

As before, the linear programming algorithm consistently
does better than the greedy algorithm. However, the differ-
ence here is larger than in the geographic model. We at-
tribute the larger difference to the fact that the problem has
a higher dimension, and therefore the local decisions that
greedy makes fare less favorably. Still, the loss in efficiency
is not large and is bounded by 10%.

5. PROBLEM TAXONOMY
Many variations are possible on the problem of suggesting

review targets. For example, in a review system with a
very limited domain, like restaurants in Rexford, we could
consider any pair of items to be equally worth comparing,
restricting our pair relevance graph G to be a clique with
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Figure 6: Performance of the greedy and linear-
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equal edge weights. Other variations might be motivated by
a user interface — for example, one number of new targets
to suggest to a reviewer at one time might be limited by the
method chosen to convey these suggestions.

Here we describe four independent dimensions along which
our original problem statement of Section 1.1 can be changed.
Besides illuminating a small part of the problem space, this
taxonomy is quite useful in Section 6, where we will give
algorithms and hardness results for a number of variations.

We focus on a set of n venues that we denote by V . We
consider a weighted pair relevance graph G = (V,E) on the
venues where the edge weight cuv gives the fraction of the
consuming users who are interested in comparing u versus
v.

To begin with, our notion of a general graph G of pair rele-
vances might be more general than we really need. Our first
dimension is to restrict G to belong to one of the following
relevance graph Categories:
C1: Homogeneous body of comparable items with the same

weight, e.g. all laundromats in Juneau, considered in
isolation from all other reviewable items, since compar-
isons among them are roughly equiprobable and much
more likely than comparisons between these and other
venues.

C2: Disjoint cliques of things comparable within each clus-
ter, e.g. all new car dealerships, with a clique con-
necting each brand’s dealerships, since researchers will
rarely compare dealerships of different brands.

C3: The fully general case of arbitrary weighted graphs
with each venue pair (u, v) having arbitrary weight cuv

To begin with, each reviewer has already reviewed some
set of venues. Our second problem dimension is to consider
a Starting state where each reviewer has either:
S1: One prior review (an unrealistically simple scenario

more useful for thought experiments and lower bounds
than for practical use)

S2: An arbitrary set of prior reviews, the general case.
There is a cost to soliciting new reviews. In Section 1.1,

we modelled this by choosing L4 from the following list of
possible per-reviewer Limits on what the optimization
outputs. We may be looking for:
L1: One more item to suggest to each reviewer r ∈ R. This

is one natural setting for an online algorithm, where we
may compute the next suggestion later if the reviewer
comes back again ready for another suggestion.

L2: Only some subset O ⊆ R of reviewers can receive a
review suggestion, so we can pick an item to suggest to
each reviewer r ∈ O. This is somewhat more practical
than L1, such as when we can use previous user activity
patterns to decide whether the user will be interested
in more review suggestions, or will even visit the site
again.

L3: k more items to suggest to each r ∈ R, to match a
reviewer’s attention budget.

L4: One more item to suggest to each r ∈ R, from a set of
items Ar that we believe r may be willing to review.
These sets can be generated from explicit actions such
as social network “check-ins” or from machine-learned
reviewer models which might infer, e.g., that the re-
viewer frequents various taquerias in San Diego.

L5: A parallel of L4 for k more items with per-reviewer
allowed sets Ar (generalizing L2 and L3).

In Section 1.1, we allow our objective OF to depend on
an arbitrary concave function F , or sometimes the partic-
ular function F1(a) = min{a, 0} which only cares whether
an item has at least one reviewer. These correspond, re-
spectively, to choices O3 and O1 along our final problem
dimension of Objective functions:
O1: Maximizing the total weight of item pairs (v1, v2) with

at least one review pair (O1 =
∑
u,v|auv≥1 cuv). This

measures the relevance of a review-pair-based UI as a
whole: how frequently will we have any such pairs to
surface to a researching user?

O2: Maximizing the total weight of item pairs with at least
h review pairs (O2 =

∑
u,v|auv≥h cuv), a natural “next

step up” from O1, representing, e.g., a limit on the
screen real estate available to display review pairs with-
out scrolling.

O3: Maximizing the weighted sum over all item pairs of
a concave function of the number of review pairs, i.e.
O3 =

∑
u,v cuvF (auv) for some concave F . Concav-

ity corresponds to the natural constraint of decreasing
marginal utility of additional review pairs. Notably,
this generalizes O1 but not O2, since O2 does not
credit an item pair until we’ve filled up a “screenful”
quota of review pairs, creating a convex region in F .

Our original problem statement in Section 1.1 is described
using this taxonomy as C3-S2-L4-O3 (or -O1).

6. EXACT PROBLEMS: LOWER BOUNDS
AND AN ALGORITHM

To ground our decision to explore approximation algo-
rithms, we now show that several problems in our taxonomy
that are significantly simpler than the C3-S2-L4-O3 case ap-
proximated above are already NP-hard in their exact form
(each is trivially in NP).

Theorem 5. It is NP-hard to exactly optimize C1-S2-L4-
O1.

Proof. We reduce from POS-NAE-3SAT (Positive Not-
All-Equals 3SAT) [24], the satisfiability problem on disjunc-
tions of 3-literal “not-all-equals” clauses, with only positive
literals (i.e. if use x as a literal, we can’t use not-x as a
literal elsewhere).

With such a formula, make each variable into a reviewer
ri, and each clause into a venue vj , which has already been
reviewed by the three reviewers rj1, rj2, rj3 (per S2). Set
Ar = {vT , vF } (per L4), which corresponds to the variable
picking a Boolean value. Set all cuv = 1. The POS-NAE-
3SAT formula is satisfiable if and only if there is a correct
assignment of reviews such that 2|V | new pairs are created
– i.e. review pairs are created for all item pairs (v, vT ) and
(v, vF ), which is equivalent to O1 = 2|V |.

Theorem 6. It is NP hard to exactly optimize C3-S1-L3-
O1, even with a single reviewer, and even if the per-reviewer
budget in L3 is given in unary for some obscure reason.

Proof. By reduction from Max-Clique in graph G =
(V,E). Set the relevance graph to (V ∪ {v0}, E), and create
a single reviewer with budget k who starts out with just the
disconnected v0. She can increase O1 to k(k + 1)/2 if and
only if G has a clique of size k.

Theorem 7. It is NP hard to exactly optimize C1-S2-L2-
O1.
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Proof. The reduction is from set cover. Starting with a
set cover instance of ms sets and ns elements, we will show
that one can cover all the elements using ks sets, if and only
if one can get ns + ms − ks new review pairs in a some
graph of venues G with a set of reviewers R. We begin by
describing the vertices of G. The graph G is a clique, so all
edges exist.

Given a collection of elements X = {x1, . . . , xn} and a
collection of sets S1, . . . , Sm ⊆ X, construct an instance of
the review problem as follows. There are three kinds of
venues:

• Each element xi is represented by an element venue
exi .

• There are two special venues: a target for the elements
ET and a target for the sets ST

• For each set Sj , there is a set venue denoted vSj .

The review graph G is a clique, so every pair of venues is
equally interesting. There are ms reviewers who have one
more venue to review, and ms + 3 reviewers who finished
their reviews and cannot review any more.

• For every set Sj , there is a reviewer rj ∈ O ⊂ R who
already reviewed vSj and exi for every xi ∈ Sj . This
reviewer has one more venue they can review.

• For every set Sj , there is another reviewer r′j ∈ R \O
who already reviewed vSj and exi for every xi 6∈ Sj .
This reviewer has finished their reviews.

• There is a reviewer who finished their reviews who re-
viewed ET and ST.

• There is a second reviewer who finished their reviews
who reviewed ST and all the element venues.

• There is a third reviewer who finished their reviews
who reviewed ET and all the set venues.

Given these reviewers, the pairs of venues which have not
been reviewed are:

• All the pairs of the form exi ,ET where exi is an ele-
ment venue.

• All the pairs of the form vSj , ST where vSj is a set
venue.

Therefore, in an optimal solution every reviewer rj would
choose either the element target ET, which would add all the
edges exi ,ET where xi ∈ Sj , or the set target ET, which
would add the venue pair vSj , ST. The following claim is
easy:

Claim 8. The original set cover problem can be covered
with ks edges if and only if one can add ns + ms − ks new
edges in the venue graph.

Given a set cover solution, assign reviewer rj to ET if set
Sj was chosen, and to ST otherwise.

Conversely, given an assignment of reviewers to a set cover
solution, include all sets Sj such that reviewer j chose ET
and exclude the others. It is possible that this solution will
not cover every element. If any element xi is missing, it
must be because every reviewer j for whom xi ∈ Sj chose

to review ST If the assignment of reviewers is optimal, then
this can only happen if every such Sj has been completely
covered except for the element xi. For each missing element
xi, pick an arbitrary set Sj containing it and add it to the
solution.

This last C1-S2-L2-O1 result also generalizes to C3-S2-L1-
O1, immediately yielding the corollary:

Corollary 9. It is NP hard to determine the optimal
assignment for the reviewers for C3-S2-L1-O1.

Proof. Reduce from C1-S2-L2-O1 by taking any pair (u, v)
that was co-reviewed by a reviewers who will not receive a
suggestion (i.e. by some r ∈ R \ O), and zeroing out the
weights cuv, since O1 has already been satisfied with regard
to that review pair. This makes the relevance graph no
longer a clique, moving the problem from C1 to C3, but lets
us replace the reviewer set R with R \ O, changing the L2
setting to L1.

C1-S2-L2-O1 and C3-S2-L1-O1 are fairly minimal models
for most real applications, which makes for a strong argu-
ment for approximation algorithms. In a couple of even sim-
pler models, though, we can get tractable exact algorithms
— by restricting reviewers to only have a single prior review.
It is no surprise that we have observed that the distribution
of number of items reviewed per reviewer is long-tailed with
a mode at 1, so these algorithms could be used for a partial
solution for the large subpopulation of reviewers who have
reviewed only one item so far:

Theorem 10. C3-S1-L4-O1 can be solved exactly in time:

O(min{m2|E|2 log(m|E|) +m|E|α, αm2|E|2})

where α =
∑
r |Ar|.

Proof. We reduce the problem to maximum-weight bi-
partite matching on the following bipartite graph B. On
the “left” side, for each venue vi that has been reviewed by
some set of reviewers Ri, make a node vi,r for every r ∈ Ri.
On the “right” side, put a node ev,w for each relevant item
pair: i.e. each edge (v, w) ∈ E. In B, ev,w is connected to
each vi,r where r, having already reviewed v, is willing to
also review w (w ∈ Ar); and, conversely, to each wi,r where
r is willing to review v, having already reviewed w. Weigh
all edges of B incident on ev,w with cvw. Since we’re in S1,
there are exactly m nodes on the “left” side, one for each
reviewer. Thus, a bipartite matching is exactly the assign-
ment of each reviewer r to one additional venue in Ar, and
maximizing its weight maximizes precisely O1.

The running time is bounded by the known bounds on
maximum-weight bipartite matching [13] on a graph with
m|E| nodes and α edges.

This running time, while polynomial, is still fairly steep
for global-scale applications, and it turns out that we should
not expect much better:

Theorem 11. Even C1-S1-L4-O1 has a linear-time re-
duction from unweighted maximum bipartite matching.

Proof. The general maximum bipartite matching prob-
lem on unweighted graph (U, V,E) is equivalent to the fol-
lowing C1-S1-L4-O1 instance. Create a reviewer for each
u ∈ U , a venue for each v ∈ V , plus a special venue v0,
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with each pair of venues weighted equally. Every reviewer
starts out with just v0 (S1), and may get exactly one sug-
gestion from her set Au = {v|(u, v) ∈ E}. Given that we
can only assign one new review per node, only venue pairs
containing v0 can get a review pair, so the O1 objective func-
tion is exactly the objective function of maximum bipartite
matching.

This makes the problem complete for Maximum Bipartite
Matching, another practical, well-studied problem where the
field does not expect significant running-time improvements
over the current best known O(min{V ω,

√
V E}) bound [14,

20]. Thus, we should not expect that even C1-S1-L4-O1,
with n items and m reviewers, will be solvable faster than
Θ(min{(nm)ω, α

√
nm}). Since we can throw out any re-

viewer with empty Ar, α = Ω(m), making the algorithm
Ω(m1.5) at the very least, which ensures that the problem
will not have exact online solutions.

The only setting in which we have a truly scalable exact
algorithm, which runs in Õ(n + m), is the most minimal
setting in our taxonomy, which we expect to be of mostly
theoretical interest:

Theorem 12. C1-S1-L1-O1 can be solved in a time Õ(n+
m).

Proof sketch. Label the venues {1, . . . , n} so that venue
i starts with ri prior reviewers, with r1 ≥ r2 ≥ . . .. The
greedy algorithm operates on the venues in this order. For
algorithm steps t = 1, . . . , n, let si(t) denote the number of
the people who reviewed restaurant i before this step. At
each step, we distribute the rt reviewers initially assigned to
venue t in lexicographical order over the following 3-tuple
objective function, listed highest-precedence first:

1. First, (A) venues i < t that haven’t sent a reviewer to
rt, then (B) all venues i > t

2. Within (A) and (B), vertices i with lower si(t) come
earlier

3. Break ties of si(t) by giving i a reviewer before j when-
ever i > j (i.e. ri < rj).

The surprisingly convoluted case analysis for the correct-
ness proof is deferred to the full version of this paper.

7. GENERALIZATIONS
Our approximation algorithms and hardness results de-

scribe the feasibility of most parts of the problem taxonomy
in Section 5. We expect that our positive results will be
applicable in the many settings where comparison research
can benefit from the highlighting of review pairs written by
the same reviewer.

Of course, there are other approaches to making a review
ecosystem more comparison-friendly by actively suggesting
item-reviewer pairs. Our algorithms can be useful in several
broader settings, but with limitations:
Reviewer categories. When reviews or reviewers are scarce,
we may need a weaker notion of comparability such as pair-
ing reviews by people in the same category: e.g. “both golf
clubs have been reviewed by an author to Golf magazine” or
“both kilts have been reviewed by 30–35-year-old men.” Our
algorithms can run in this setting if each reviewer is assigned
to one relevant category in advance, and all reviewers in each

category are merged into a “meta-reviewer” for the purposes
of the algorithm. However, we then need to determine rele-
vant categories in advance, and cannot exploit the structure
of a membership of a reviewer in multiple categories.
Item aspects. When items have several known aspects
which may not get covered by any one review, we can con-
sider suggesting, to prospective reviewer, either an item-
aspect pair (“Could you review Bob’s diner and focus on
their breakfast menu variety?”), or, for a reviewer already
set on reviewing a particular item, suggesting aspects of in-
terest (“While you’re reviewing Bob’s hotel, could you rate
the pool and the A/C system?”). Our algorithms can ap-
proximate this by expanding the relevant pairs graph G to
representing each item-aspect pair as a separate“item”node,
putting weight on identical aspects of relevant item pairs:
“breakfast quality at Alice’s diner” and “breakfast quality
at Bob’s diner” are then a relevant pair if Alice’s and Bob’s
are frequently compared, but“Alice’s appetizers”and“Bob’s
bathrooms” aren’t. However, this will not capture this com-
binatorial structure of the item-aspect space, so we will not
be able to consider that it’s easier to review 3 aspects of a
single item than 3 unrelated item-aspect pairs.

We leave open the many questions of how to best opti-
mize suggestions for these and other broader settings while
utilizing more of the additional combinatorial structure. We
also leave open the design questions of how to combine these
suggestion-planting algorithms with the existing NLP-based
passive review mining, as well as the design and HCI consid-
erations in building a review-comparison UI to best exploit
these algorithms.
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